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Abstract-Temperature distributions are obtained around a long cylindrical cavity in a permeable medium 
in the presence of steady radial seepage. Constant temperature and constant heat flux conditions are 
considered at the cavity surface. Transient solutions are derived as quadratures, yielding closed form 
solutions for particular seepage rates. Steady states are derived as limiting cases. Small and large time 
approximations are derived for the cavity temperature and flux. With inward seepage, the thermal radius 
of influence is restricted and steady state attained more rapidly. For outward seepage, the radius of influence 
becomes infinite and the steady temperatures uniform. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Heat conduction in a porous medium through which 
fluid is flowing is of relevance to thermal storage 
systems, geothermal energy production systems, reac- 
tion chambers, unlined tunnels, mining, etc.-see, for 
example, Gringarten et al. [l], Claesson and Dunand 
[2], Iguchi [3], McPherson [4], Kimura et al. [5]. In all 
cases, convection of thermal energy by the fluid flow 
can have a considerable influence on the overall 
behaviour of the heated zone. 

In general, the lluid flow might be caused by either 
natural or impressed pressure distributions. In low- 
permeability media experiencing small temperature 
differences, however, buoyancy-induced flows (see for 
example, Bau [6]) are usually small in comparison 
with pressure-induced flows. These are the conditions 
assumed herein. They often exist in the ground sur- 
rounding mines and tunnels, for instance, because the 
opening creates a local variation in piezometric pres- 
sure (in comparison with the surrounding medium). 

The conduction of heat in an infinite medium boun- 
ded internally by a cylindrical cavity was first con- 
sidered by Nicolson [7] using a Green’s function 
approach to solve the case of constant cavity surface 
temperature. Goldstein [8] applied the Heaviside 
operator method 1:o this and other cases. Carslaw and 
Jaeger [9, lo] developed solutions using the Laplace 
transform technique, summarized the solutions for 
the standard steady and periodic boundary conditions 
and presented a solution for the temperature dis- 
tribution due to constant cavity surface temperature 
in the presence of axisymmetric, radially outwards, 
lluid flow. 

t Author to whom correspondence should be addressed. 

The following theoretical development concerns the 
particular case of a long cylindrical cavity in an infinite 
homogeneous porous medium. Transient heat trans- 
fer is considered, but the fluid flow (seepage) is 
assumed constant because the impressed piezometric 
head difference is constant. The solution in ref. [lo] is 
extended to the case of radially inwards flow, and the 
conduction heat flux at the cavity is found. Solutions 
are also obtained for the temperature distribution 
induced by a constant prescribed cavity surface heat 
flux due to conduction. 

For transient conditions, solutions are obtained 
using Laplace transforms and are expressed in the 
form of integrals of Bessel functions in which the order 
of the Bessel functions depends on the rate of seepage. 
In some particular cases, closed-form solutions can be 
obtained. In most cases, however, the integrals must 
be evaluated numerically. Exact steady-state solutions 
are obtained as limiting cases. In addition, some 
approximate closed-form solutions for small and large 
times are obtained by approximating the Bessel func- 
tions before carrying out the inverse Laplace trans- 
form. 

2. MATHEMATICAL FORMULATION 

2.1. Introduction 

Consider a long horizontal cylindrical cavity (Fig. 
1) of radius a in an infinite region filled with a satu- 
rated porous medium of uniform permeability K. The 
permeability and seepage velocity are stipulated to be 
sufficiently small for the temperature T of the fluid 
and the matrix at any point to be equal at all times. 
The fluid and the porous matrix are assumed incom- 
pressible and seepage velocities due to natural con- 
vection are assumed to be negligible. 
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NOMENCLATURE 

radius of cavity [m] 
constants of integration 
order of Bessel function in equation 
(17) 
constants of integration 
heat capacity at constant pressure 
[J kg-’ K-l] 

erfc(x) complementary error function 

g 
G 

H, Ho 

4(x) 

JAW 
k 
K 
Kk4 

P 
4 

QF 

Q FN 

Qll 

r, r. 
R 
R* 

s 

t 
T 

Laplace transform of F(t) ; see 
equation (10) 
gravitational acceleration [m sm2] 
non-dimensional steady state cavity 
heat flux (equation 30) 
piezometric head, piezometric head at 
radius r. [m] 
modified Bessel function of first kind, 
order 1 
Bessel function of first kind, order 1 
thermal conductivity [w m-’ K-‘1 
permeability [m2] 
modified Bessel function of second 
kind, order Iz 
pressure IPa] 
radial heat flux (positive = outwards) 
W me21 
radial fluid flow rate per unit length of 
cavity (positive = outwards) 
[m’s_‘] 
radial inward fluid flow rate per unit 
length of cavity [m’ s-r] 
heat flow rate per unit length of cavity 
[w m-7 
radial distance, radius of influence [m] 
non-dimensional radial distance = r/a 
non-dimensional quantity 
=(R-1)/2& 

Laplace transform variable ; see 
equation (10) 
time [s] 
(absolute) temperature [K] 

TO 
0, 
V 
W 
X 
y&d 

> 

initial temperature [K] 
radial seepage velocity [m s-l] 
expression defined in equation (38) 
integration variable ; e.g. equation (22) 
arbitrary variable 
Bessel function of second kind, order 
1 
axial coordinate [m] 
height above a datum. 

Greek symbols 
effective thermal diffusivity of 

E;c;i:t!:: ;,6 

parameter in the Bromwich integral 
equation (16) 
grouping in equation (50) 
grouping in equation (56) 
forced convection parameter 
Q~/47[a 
azimuthal coordinate 
inward flow parameter Q,,/47rct 
dynamic viscosity [Pa s] 
fluid density [kg m-‘1 
ratio of heat capacities of saturated 
medium and fluid 
non-dimensional time = utja’. 

Subscripts 
a, co quantity at radius a, at infinity 
H prescribed heat flux at the cavity 

surface 
T prescribed temperature at the cavity 

surface. 

Superscripts 
* non-dimensional variable 
- an ‘over bar’ denotes a Laplace 

transformed variable. 

\ I f ah3aF The piezometric head H in the fluid is : 

\ 
a’ -m- H=;+Z (1) 

7\ where p is the fluid density, g is the gravitational 

I 

constant and Z is height above a datum. The piezo- 
metric head is assumed to have the uniform value H, 
remote from the cavity and the uniform value Ho 

Fig. 1. Cross-section of cavity showing positive directions of around the cavity surface. Since the seepage rates are 
heat and fluid flows. assumed to be small, the consequent axial rates of flow 
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and the associated axial piezometric head gradient 
in the cylindrical cavity will also be small. In these 
circumstances, it is reasonable to assume that the vari- 
ation of seepage velocity and temperature with respect 
to the axial direction will be small enough to be neglec- 
ted. 

The temperature is assumed to be initially uniform 
throughout the medium with the value To. Conditions 
of either prescribed temperature T,, or of prescribed 
surface heat flux q. due to conduction, are imposed 
uniformly over the cavity surface at time t = 0 and 
are maintained constant thereafter. With these con- 
ditions, it is reasonable to expect that the fluid and 
heat flows will be axisymmetric as well as independent 
of distance along the cavity axis. Accordingly, a cyl- 
indrical polar coordinate system r, 8, z is chosen, with 
r = a defining the position of the cavity surface. 

The governing equations for convection in a porous 
medium may be fomund, for example, in Cheng [ll], 
Poulikakos and Bejan [12], Nield and Bejan [13]. In 
general, these comprise the equations of conservation 
of mass, momentum (Darcy equation) and energy, 
and an equation of state. However, since both buoy- 
ancy and fluid and matrix compressibility effects are 
to be neglected, the last of these equations is not 
required. Furthermore, the equations of conservation 
of mass and momentum are uncoupled from the 
energy equation and can thus be integrated separately 
from it. 

2.2. Fluidflow 
In cylindrical coordinates, the equations of con- 

servation of mass and momentum for steady fluid flow 
take the form : 

1 d(rv,) ---0 
r dr 

where v, and p arms the radial seepage velocity and 
dynamic viscosity of the fluid, respectively. Only 
steady seepage is considered because the boundary 
conditions are assumed steady and the matrix and 
fluid are assumed incompressible. Any transient state 
would therefore be very short in comparison with heat 
conduction time scales. 

Equation (2) may be integrated directly to give the 
radial seepage velocity as : 

where QF is the volumetric seepage rate per unit length 
out of the cavity. 

By eliminating 1;, from equations (3) and (4), and 
integrating from r = a (the cavity surface) to radius 
r = r,, (the effective radius of influence of the cavity) 
where the piezometric head is H,, the seepage rate 
may be shown to be : 

When H, > H,,, the fluid flows radially outwards ; 
when H, < H,, it flows radially inwards. Thus, with 
the assumptions of steady uniform piezometric head 
at r = a and r = r,, the radial seepage essentially 
becomes a parameter in the heat flow problem. 

2.3. Temperatures and heatflux 
The energy equation may be expressed as : 

aT aT 
o,t+vrYg= a($+;$) (6) 

in which 0 is the ratio of the heat capacities of the 
saturated medium and the fluid and CI is the effective 
thermal diffusivity of the saturated porous medium. 
This is defined (e.g. ref. [l 11) as : 

k 
a=---- 

PG 
(7) 

where k and C, are the thermal conductivity of the 
saturated medium and the specific heat capacity of the 
fluid, respectively. 

Since the temperature T appears only in derivatives 
in equation (6), it is determined only to an arbitrary 
constant, which is taken herein to be an initial, uni- 
form temperature To existing before any thermal dis- 
turbance of the system. Then, eliminating v, between 
equations (4) and (6), the governing differential equa- 
ton for the variation of temperature is : 

which may be integrated for appropriate initial and 
boundary conditions. 

The heat flux q due to conduction at any radius in 
the saturated medium is : 

q = -k;. 

2.4. Initial conditions and boundary conditions 
Herein, the phenomena under study are the chan- 

ging thermal conditions during the transition from 
one steady state condition to another. The rate of fluid 
flow remains steady, but the temperature field evolves 
in response to a step change in the prescribed con- 
ditions at the cavity surface. 

When the temperature is stipulated at the cavity 
surface, the prescribed conditions may be stated as : 

Initial conditions (t < 0) : T(r) = T, 

Boundary conditions (t > 0) : 

T,=, z T, ; T(r,) = TO. 
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When the heat flux in the solid matrix is stipulated 
at the cavity surface, the prescribed conditions may 
be stated as : 

Initial conditions (t < 0) : T(r) = To 

Boundary conditions (t > 0) : 

q,_ = q.; T(r,) = To. 

3. GENERAL SOLUTION IN THE LAPLACE 

TRANSFORM DOMAIN 

The Laplace transform F(S) of any time-dependent 
function F(t) is defined by : 

s 

m 
F(s) = e-“‘&‘(t) dt (10) 

II 

in which the Laplace parameter s may be chosen arbi- 
trarily. By transforming the temperature T in this 
manner and using T = T,, at t = 0, equation (8) may 
be expressed as : 

(11) 

which is an ordinary differential equation in the inde- 
pendent variable r. The homogeneous form of equa- 
tion (11) has the form of the modified Bessel equation. 
The general solution of this together with the par- 
ticular solution To/s is : 

T= [A,Z,(r~)+B,K,(r~)lrK+To/s (12) 

where Z,,(x), K,(x) are modified Bessel functions of 
the first and second kind and of order equal to the 
forced convection parameter K, defined as 

(13) 

in which Qr > 0 corresponds to outward fluid flow. 
The parameter /I satisfies : 

p = OS/U. (14) 

The constants of integration A, and B, are deter- 
mined from conditions at infinity and at the cavity 
surface. The first of these yields A, = 0 because 
Z,(rp) + co as r/l + 00. Thus, equation (12) reduces 
to : 

F = B,K,(r/?)r”+ To/s. (15) 

The constant B, is to be found from the cavity surface 
boundary condition. The temperature distribution is 
then obtained by performing the inverse Laplace 
transform using the Bromwich integral : 

F(t) = j$ s 6firn 

e”F(s) ds (16) 
E-i02 

in which E is chosen such that all singularities of the 
integrand lie to the left of the line s = E. 

In considering the properties of equation (15) it 
should be noted that : 

&(x) = fLG.9 (17) 

where b is any positive real number. When K < 0 (i.e. 
QF < 0), the absolute value of K, namely 1, is con- 
veniently defined as : 

[QF<O:] kg= --K (18) 

in which QrN = - Qr is the magnitude of inwardradial 
flow rate per unit length of cavity. The quantity 1 
characterizes the relative importance of the convection 
and conduction processes for inwards radial flow. It 
is used extensively herein and, because of equation 
(17), it can be used for the order of the Bessel function 
in the general solution equation (15), which becomes : 

[K < 0:] F= B,K,(rjl)rK+ To/s. (19) 

4. PRESCRIBED CONSTANT TEMPERATURE Ta 

AT THE CAVITY SURFACE 

When a constant temperature T, is maintained at 
the cavity surface, the Laplace transform of this 
boundary condition is To/s and evaluation of the con- 
stant B, in equations (15) and (19) leads to a com- 
posite result for both outward and inward seepage, 
as : 

T-(To/s) = (To-To)--- %(rD) Rx 

SZc (aP) 

= (T.-TJ$$)R” (20) 
i 

where R is a non-dimensional radius defined as 

R = r/a. (21) 

By inspection, the sign of K in equation (20) influ- 
ences the transformed temperature only through the 
term R”, which is merely a constant in the integral of 
the inverse Laplace transform (equation (16)). Thus, 
the time-dependent part of the temperature dis- 
tribution is, in this case, independent of whether the 
seepage is radially outwards or inwards. 

Performing the inverse Laplace transform of equa- 
tion (20) using equation (16) with the contour defined 
in Fig. 2, the temperature distribution can be written 
as: 

JL(wr) YA(wa) - Y,(wr)Jl(wa) dw 
X 

.C (wa) + Y: (wa) 
- R” (22) 

W 1 
where r*, is a non-dimensional temperature defined as 

p ~ (T-To) 
= (To-To) (23) 
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! Im(s) 

Fig. 2. Integration contour in the complex s plane. 

the subscript T denoting the prescribed temperature 
boundary condition. Then r*, = 1 at the cavity surface 
and J,(x) and Y,(x) are Bessel functions of the first 
and second kinds of order 1. The parameter w is simply 
an integration variable. In ref. [lo], a result is obtained 
corresponding to the special case of equation (22) 
when K is positive:, i.e. the fluid flow is radially 
outwards. When K := 1 = 0, equation (22) reduces to 
the solution for pun: conduction given in ref. [lo]. 

In principle, equation (22) is a general solution for 
the constant cavity tamperature case. In practice, how- 
ever, the integral can be evaluated analytically only 
for certain particular values of the flow parameters K 
and 1. For other values, a numerical method of solu- 
tion is necessary. One option is to perform the inverse 
Laplace transform of equation (20) numerically. Ano- 
ther is to evaluate th’e integral in equation (22) numeri- 
cally; a numerical procedure similar to that outlined 
in Gemant [ 141 is satisfactory. 

4.1. Outwardjuid$!ow, i.e. K > 0 
4.1.1. Transient conditions. In the special case of 

K = 0.5, the Bessel functions are of the spherical kind 

(4 
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and the integral in equation (22) can be evaluated 
exactly. Introducing the non-dimensional quantities : 

(24) 

the temperature distribution is 

[K = 0.5 : ] r*, = erfc(R*) (25) 

where erfc(x) is the complementary error function. 
This result is illustrated in Figs. 3(a and b) which 
show, respectively, the variation of temperature with 
time z at a radius R = 1.5 and the variation with 
radius R at the time z = 100. Only the curves with 
JC > 0 are applicable to outward seepage. At any par- 
ticular radius, steady-state conditions are approached 
more rapidly in the presence of seepage than when 
K = 0. Likewise, at any particular time, the radius of 
influence of the cavity is decreased by the seepage. 

4.1.2. Steady-state conditions. When K > 0, the first 
term within the square brackets on the right-hand side 
of equation (22) reduces to unity when multiplied by 
R”. The second term is found to be negative and to 
tend to zero as time tends to infinity. Thus, the steady- 
state condition is simply : 

[QFaO:] T;= 1 (26) 

i.e. the temperature is uniform throughout the 
medium. 

4.2. InwardJluidJlow, i.e. K < 0 
4.2.1. Transient conditions. For the particular cases 

of 1 = --IC = 0.5 and 1 = --K = 1.5, equation (22) 
can be integrated analytically, giving : 

[A = -K = 0.5:] r*, = [erfc(R*)]R-’ (27) 

and 

[a = --K = 1.5:] Pr = [erfc(R*) 

+(R-l)exp(R-l+r)erfc{R*+&}]R-3. (28) 

1 

T*T 

0.5 

R=r/aI 
*I 

--- 1.25 

______1,5 1 --_--_2 

-__-5 

- 10 

Fig. 3. (a) Influence of inwards and outwards seepage on temperature histories (constant cavity surface 
temperature, R = 1.5) ; (b) intluence of radial position and seepage on temperature distributions (constant 

cavity surface temperature, r = 100). 
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R 
Fig. 4. Influence of inwards seepage on the steady-state temperature distribution (constant cavity surface 

temperature). 

For other values of rc, equation (22) must be evaluated 
numerically. 

In Fig. 3(a), it is seen that increase of seepage rate 
reduces the time required to approach the steady-state 
condition, which is 1 for K >, 0 and 1.55’” for K < 0 
(1 > 0). For the particular radius shown (R = 1.5), 
steady conditions effectively prevail at r = 100 when 
1 = 1 (i.e. K = - l), whereas they still do not exist at 
r = 1000 when I = K = 0. In the latter case, the time 
scales required to approach steady state can be so 
large that the conditions at moderate radii are always 
unsteady for practical purposes. Figure 3(b) shows 
temperature as a function of inflow rate 1 at a time 
(r = 100) such the conditions are already close to 
steady state for the inflows (K < 0), but they are far 
from the uniform steady-state temperature in the case 
of zero or outward flow (K 2 0). For 1 > 1.0, the 
effective radius of influence is only about 5~. 

As a physical example, consider an 8 m diameter 
tunnel in sandstone. Using a typical value for OZ, it 
emerges that a value of 0.25 for 1 corresponds to a 
seepage rate of about 4 1 h-’ m-’ of tunnel. About 12 
years would be required to attain an effective steady 
state compared with around 500 years in the absence 
of seepage. 

4.2.2. Steady-state conditions. For inward seepage, 
K = -1 and 1x1 = 1 and the first term in square 
brackets on the right-hand side of equation (22), when 
multiplied by R-” becomes R-‘“, while the integral 
term becomes zero in the limit as time tends to infinity. 
The steady-state temperature distribution is, thus : 

T; = R-2”. (29) 

This result, which could have been obtained by direct 
integration of equation (8), with aaT/& = 0, shows 
that with inward flow (unlike the outward flow case) 
a limited region of influence can occur at the steady 
state. Figure 4 shows the extreme sensitivity of the 

temperature distribution to inward seepage. At 
r = 10a and 1 = 0.25, the temperature is only 3 1% of 
that with no seepage. A further four-fold increase of 
seepage rate results in effectively negligible tem- 
perature at this position. 

4.3. Heat-&x at the cavity surface 
4.3.1. Transient conditions. Using equations (9) and 

(22) and setting R = 1, the heat flux at the cavity 
surface due to heat conduction is found to be : 

(qF).)R=, = G+ $ 
s 

m emaw+ 
dw 

II w[JZ(wa) + Y:(wa)] 

(30) 

where the non-dimensional flux q* is defined as 

(31) 

The parameter G in equation (30) is zero when K > 0 
and equals 21 when K < 0. For the particular cases of 
3, = 0.5 and 1.5, the heat flux at the cavity surface can 
be determined from equations (9) (31) (27) and (28), 
giving : 

[A = -K = 0.5:] (q:)R=l = 1$-L 
J& (32) 

and 

[A = -ic = 1.5:] (q$)R=l = 3+ L -e’erfc(&). 
fi 

(33) 

For integer values of 1, the integral in equation (30) 
can be evaluated numerically. The dependence of the 
surface heat flux on time and on the rate of seepage 
are illustrated in Figs. 5(a) and (b). At any particular 
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0.01 0.1 1 10 100 1000 0 0.5 
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Fig. 5. (a) IEvolution of heat flux at the cavity surface-dependence on inwards and outwards seepage 
(constant cavity surface temperature, R = 1) ; (b) influence of inwards seepage on heat flux at the cavity 

surface (constant cavity surface temperature ; R = 1). 

time, the heat flux increases with increasing inwards 
seepage ; it decreases with increasing outwards seep- 
age. The greatest relative influence on the conduction 
heat flux is at large times. When Iz = 0, the expression 
in equation (30) reduces to that for pure conduction. 

4.3.2. Steady-state conditions. Since when t -+ 03, 
the integral in equation (30) vanishes, it follows that 
G is the steady-state cavity heat flux. Thus, for out- 
ward or zero flow (K > 0), the cavity flux vanishes at 
the steady state, whereas for inward flow (K < 0), 
there is a steady-state flux. 

5. PRESCRIBED HEAT FLUX 
SURFACE 

AT THE CAVITY 

When a constant conduction heat flux per unit 
length qU = Q,/2az is maintained at the cavity surface, 
the boundary condition is : 

The constant B, in equations (15) or (19) can be found 
using the Laplace transform of equation (34). The 
transformed temperature distribution is then known. 

5.1. OutwardJIuidfIow 
51.1. Transient conditions. The transformed tem- 

perature distribution in this case is : 

in which pH is thla transform of the non-dimensional 
temperature PH defined as 

After inverse L,aplace transformation, the tem- 
perature distribuiion is : 

r*, = [Vt+ iRK I:(1 -e-aw2r) 

x JAM Y,- I (wa) - Y,(wrV,- I (wa) 
w*[JE-,(wa)+ Yz-,(wa)] 

dw I (37) 

where 

V=O whenO<rc< 1 

Y = 2a(K- 1)/a’ when K > 1. (38) 

when K = 0, equation (37) reduces to the result for 
zero seepage given by Carslaw and Jaeger in ref. [lo]. 
For integer values of K, equation (37) can be evaluated 
numerically. For the particular case of K = 0.5, the 
Bessel functions are spherical and the temperature 
distribution can be found analytically as : 

r*, = 2mexp [ - (R*)2] -(R - 1) erfc(R*) 

(39) 

which reduces at the cavity surface to 

(r,),=, = 2&G. w 
These results show that for K = 0.5, the temperature at 
any point in the porous medium continues to increase 
without limit in time. 

5.1.2. Steady-state conditions. By direct integration 
of equation (8) with Q aT/dt = 0, the temperature dis- 
tribution for K > 0 is found to be of the form : 

B 
T= AR’“+- 

2K 

where A and B are constants. Thus, the temperature 
cannot be bounded for K > 0 unless T is uniform. For 
the boundary condition of equation (34) it follows 
that the only possible steady state is the trivial one of 
uniform temperature equal to the initial temperature 
T,. This can also be demonstrated by considering the 
form of equation (35) ass + 0, which by the properties 



1538 J. BROWN et al. 

of the Laplace transform, corresponds to conditions 
as t + a. For K > 1, for example, pu cc SC’ which 
implies that 7”n CC t, so that there is no steady state. 
Physically, as long as heat is supplied at the cavity, 
the temperature in the porous medium will increase 
when there is outward seepage (or no seepage as 
shown in ref. [lo]). 

5.2. InwardfEuidJow 
5.2.1. Transient conditions. When the seepage is 

inwards, i.e. K < 0 and 1> 0, the transformed tem- 
perature distribution is : 

and the temperature distribution is 

X Ji(wr) YA+ I (wa> - Y2(wr)Ji+ I ha) 
w* [G, 1 (W + Z+ I (wa>l 

dw R-“. 
I 

(43) 

The Bessel functions in this equation are of the spheri- 
cal kind when I = 0.5, and the temperature can then 
be obtained as : 

T$ = [erfc(R*) -eR-‘+’ erfc(R*+J)JR-‘. (44) 

At the cavity surface, where R = 1, R* = 0 and 
erfc(R*) = 1, the temperature is : 

(T*,),=, = 1 -e’erfc(&). (45) 

Figure 6(a) shows temperature distributions at suc- 
cessive times for the particular case of 1 = 1.0. The 
temperature at the cavity surface reaches approxi- 
mately 50% of its long-term steady value when z is as 
small as 0.1. It reaches 90% of the steady-state value 

(a) I T --- 0.1 -_.-, I -___,o 

. . . . . .,0(-J 

- lOO( 

when o GZ 2. The radial influence of the cavity is rela- 
tively small at all times. For instance, the heat flux at 
radii greater than R = 2.5 never exceeds 20% of the 
steady-state value at the cavity surface. Figure 6(b) 
shows the influence of the inwards fluid flow rate on 
the temperature at the cavity surface at various times. 
At sufficiently small times, the influence of the seepage 
is very small, whereas at large times, it is quite strong. 

5.2.2. Steady-state conditions. As t + co, equation 
(43) reduces to a non-trivial steady state : 

while the temperature at the cavity surface becomes 

ma,=, =A 
From Fig. 6(b), it is seen that steady state is 
approached rapidly when 1 > 1, but much larger times 
are required at small seepage rates. It is never achieved 
at I = 0 (no seepage). The temperature distributions 
at the steady state for a range of the parameter 1 
are shown in Fig. 7. As may be seen by comparing 
equations (46) and (29), the curves in Fig. 7 are scaled 
by l/(U) compared with Fig. 4. The particular case 
of 1= 0.5 is the same in both figures. 

6. APPROXIMATE SOLUTIONS FOR INWARD 

RADIAL FLOW 

All exact analytical solutions presented herein are 
for seepage rates corresponding to half integer order 
Bessel functions. All other results have been obtained 
by numerical evaluation of quadratures such as in 
equation (22) and are for seepage rates corresponding 
to integral or half integral orders of the Bessel func- 
tions. However, short- and long-time approximations 
valid for all /z can be obtained in most cases by using 

T*H 

Fig. 6. (a) Evolution of temperature distributions with inwards seepage (constant cavity surface heat flux, 
A= 1) ; (b) evolution of the influence of inwards seepage on the cavity surface temperature (constant cavity 

surface heat flux, R = 1). 
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Fig. 7. Influence of inwards seepage on the steady-stated temperature distribution (constant cavity surface 

heat flux). 

limiting forms (for small and large arguments) of 
the Bessel functions appearing either in the transform 
solutions, for example, equation (20), or in the inte- 
grands of the inverse transform solutions, for exam- 
ple, equation (22) 

6.1. Prescribed constant temperature T, at the cavity 
surface 

6.1.1. Approximate small-time solution. As can be 
seen from equation (lo), large values of s in the 
Laplace transform imply that only small values of 
time t contribute significantly to the transform value. 
It follows that expressions valid for small times can 
be derived using approximations that are valid for 
large arguments of the modified Bessel functions in 
equation (20). For large values of x, the leading terms 
of the asymptotic expansion of the modified Bessel 
function K,(x) have the form : 

Using equations (20) and (48) an approximate solu- 
tion for the temperature distribution valid at small 
times is : 

r*, x [erfc(R*) + (R- 1) exp [c(R- 1) + c’r] 

x erfc(R* + [&)]R-(‘+‘.‘) (49) 

where 

5 = (41’ - 1)/S. (50) 

This expression is compared with the numerical evalu- 
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ation of equation (22) in Fig. 8(a) for the particular 
case of 1 = 1. The agreement is satisfactory for r less 
than about 1.0. Although equation (49) is approxi- 
mate for most values of 1, it is exact when 1 is equal 
to 0.5 and 1.5 (indeed, it is then exact for aN times). 
In these cases, the asymptotic expansions of the Bessel 
functions terminate after a finite number of terms, 
giving expressions that are identical to the exact form 
of these spherical functions. 

Using equations (9) and (49), the conduction heat 
frux at the cavity surface at small times is obtained as : 

(qF)+, x(l+ lS)+ __!-- -exp(Pz)erfc(iJ) 
J71z 

(51) 

which coincides with the exact solutions for Iz = 0.5 
and 1.5 [equations (32) and (33)]. For 1 = 1, equation 
(51) is compared with the numerical evaluation of 
equation (30) in Fig. 8(b) and is seen to give sat- 
isfactory results for r smaller than about 1. 

6.1.2. Approximate large-time solution. By inspec- 
tion of equation (lo), the use of a small value of s in 
the Laplace transform will ensure that the result is 
dominated by the contribution of large values of t. 
Thus, an approximate temperature distribution valid 
at long times can be obtained by replacing the modi- 
fied Bessel functions in equation (20) by a suitable 
approximation valid for small arguments. In the case 
that 1 is a positive real number other than an integer, 
an appropriate expansion is : 

2” 1 &(x)xz _ 0 {F 1 x 21 ~-~ - 
2sinIn x I-(1-1) 01 r(1+1) 2 

x2 1 

O[ 

1 x 2A +2-------- 1-(2-a) 0 11 r(2+a) 2 (52) 
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Fig. 8. NL, and ST, LT denote numerical, and short- and long-term approximate solutions respectively. 
(a) Short- and long-term approximations for the cavity surface temperature with inwards seepage- 
comparisons with exact solution (constant cavity surface temperature, 1 = 1.0, R = 1.5) ; (b) short- and 
long-term approximations for the heat flux at the cavity surface with inwards seepage (constant cavity 
surface temperature, L = 1 .O, R = 1) ; (c) short- and long-term approximations for the cavity surface 

temperature with inwards seepage (constant cavity surface heat flux, 1 = 1.0, R = 1). 

where r(A) is the gamma function. This expression 
has been derived from the definition of K,(x) in terms 
of 4(x) and Z_,(x) using a series expansion of the 
latter functions. It is applicable for 1 > 0, but excludes 
1 = 1 and 2 for which standard expressions are avail- 
able in Abramowitz and Stegun [ 151. 

By substituting equation (52) (or an expression for 
1 = 1 or 2) into equation (20) and taking the inverse 
Laplace transform, the approximate temperature dis- 
tribution for I > 0 is of the form : 

@P-l) (ZP+*-1) R_2” 

I-(1 +n)(4# + I(2+1)(4r)‘+’ 1 ’ 
(53) 

The validity of this result for a larger integer value 
of 1 has not been verified. At 1= 1, there is good 
agreement in Fig. 8(a) (for z greater than about 3) 
with a numerical evaluation of equation (22). At zero 
seepage (1 = 0), equation (53) does not apply but 

suitable approximations are given in Ritchie and 
Sakakura [16]. 

The heat@ at the cavity surface at large times, 
determined from equations (9) and (53) is : 

1 - I--(2+1)(4r)“+’ 
(54) 

Figure 8(b) compares this approximation, at 1 = 1 .O, 
to the numerical evaluation of equation (30), with 
satisfactory agreement for r > 3. 

6.2. Prescribed constant heatflux qa at the cavity sur- 
face 

6.2.1. Approximate small-time solution. Equation 
(48) can be used in equation (42) to obtain a small- 
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time approximation for the cavity surface temperature 
due to constant cavity surface heat flux q12 in the form : 

G%R= 1 =t { 1 - exp(q%) erfc(qJ)} 

+21 ( )J ? 
i -- s {l -exp($7) erfc(qJ)} (55) 

where 

11 = [(A+ 1)2 - l]/S. (56) 

A comparison in Fig. 8(c), with the numerical evalu- 
ation of equation (43) for 1= 1 .O, shows satisfactory 
agreement for 7 <: 0.1. The case of il = 0 when equa- 
tion (55) is singul.ar is considered in ref. [16]. 

6.2.2. Approxi,nate large-time solution. Using equa- 
tion (52) in equation (42), the approximation cavity 
surface temperature is : 

l 1 

I-(1+1)(47)” + r(n+2)(47)“+’ 1 ’ 
(57) 

In Fig. 8(c), this result is compared with numerical 
integration of equation (43). The agreement is sat- 
isfactory for 7 > 1. The case of zero seepage (A = 0) 
for which equati’on (57) is singular, is considered by 
Carslaw and Jaeger in ref. [IO]. 

7. CONCLUSIONS 

(1) Analytical solutions in the form of quadratures 
have been obtained for transient heat conduction radi- 
ally to or from a cylindrical cavity in a permeable 
medium with steady radial fluid seepage outwards or 
inwards for the following thermal boundary con- 
ditions at the cavity surface : (i) a prescribed constant 
temperature ; and (ii) a prescribed constant heat flux. 

(2) Exact closed-form solutions have been found 
for these cases at certain particular seepage rates. 
Approximate analytical solutions have been found 
for all seepage rates at small time and at large time 
(approaching steady state). Numerical solutions have 
been obtained for all seepage rates at all times. 

(3) With zero or outwards seepage and prescribed 
cavity surface temperature, the radial influence of the 
cavity increases indefinitely with time. Close to the 
cavity, the conditions approach a uniform steady state 
if the cavity surface temperature is constant. In 
contrast, in the case of prescribed cavity surface heat 
flux, the temperature increases without limit. 

(4) With inwards seepage and prescribed cavity sur- 
face temperature or heat flux, the effective radial 
influence of the ‘cavity is limited at small times for all 
seepage rates and at all times for large seepage rates. 
The effective radius of influence decreases with 

increasing seepage rate. Within this radius, the heat 
flux is significant at all times. The approach to steady 
state is progressively more rapid as the fluid flow rate 
increases. 

(5) In the case of inwards seepage, a steady state is 
found to exist for both types of boundary condition 
at the cavity surface. Exact solutions have been found 
for all seepage rates. The thermal influence of the 
cavity is limited and decreases with increasing seepage 
rate. 

(6) In the case of zero or outwards seepage and 
prescribed cavity surface temperature, the only poss- 
ible steady-state condition is that of uniform tem- 
perature throughout the medium. 
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